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1
SYSTEM AND METHOD FOR STATIC AND
MOVING OBJECT DETECTION

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and
used by or for the Government for governmental purposes
without the payment of any royalty thereon.

BACKGROUND OF THE INVENTION

In real world monitoring applications, moving object
detection remains to be a challenging task due to factors
such as background complexity, illumination variations,
noise, and occlusions. As a fundamental first step in many
computer vision applications such as object tracking, behav-
ior understanding, object or event recognition, and auto-
mated video surveillance, various motion detection algo-
rithms have been developed ranging from simple approaches
to more sophisticated ones [11].

OBIECTS AND SUMMARY OF THE
INVENTION

The present invention comprises a novel hybrid moving
object detection system and method that uses motion,
change, and appearance information for more reliable detec-
tions over the prior art. The main features of the invention
are: (i) A motion computation method based on spatio-
temporal tensor formulation named flux tensor; (ii) A novel
split Gaussian method to separately model foreground and
background; (iii) A robust multi-cue appearance comparison
module to remove false detections due to illumination
changes, shadows etc. and to differentiate stopped objects
from revealed background by removed objects. The inven-
tion can handle shadow, illumination changes, ghosts,
stopped or removed objects, some dynamic background and
camera jitter while still maintaining a fast boot-strapping.
The invention outperforms most well-known prior art tech-
niques on moving object detection.

Previous methods employing flux tensor models alone
work well if there is motion in the video. So if a person or
object is moving then the flux tensor will work. But if the
person or object stops (or moves very slowly) then the flux
tensor will not be able to detect the object. [10]

The present invention FTSG (Flux Tensor with Split
Gaussian models) is able to detect moving objects that
become stationary and stop. Other patented and published
methods would also fail in this situation as after some time
period depending on an update or learning parameter, the
stopped object would be considered as part of the back-
ground and not be detected any further, i.e. it would “dis-
appear” into the background as it is no longer moving. This
is a similar situation to a person who walks into a room and
sits down in a couch. Initially the person would be detected
by flux and other methods. But after varying time periods
ranging from a few tenths of a second to a few seconds or
longer depending on the update parameter the flux and other
competitive methods would then classify the sitting person
as background and no longer be able to detect the person
until they start to move again.

The present invention (FTSG) however is able to detect
the person when they walk into the room and during the
entire period that they are sitting in the chair stationary they
are still detected accurately using the change detection
model. This makes the present invention very robust. Addi-
tionally when a stationary object moves, the background
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behind the object is often misclassified as foreground or an
object of interest in prior art methods. In the present inven-
tion the FTSG classifies this scenario by labeling these
pixels in each video frame as a “revealed background”. This
gives more accurate information for providing alerts to an
operator or for providing detections for a tracking algorithm
that labels changed pixels as one of multiple categories
including revealed background, shadow and so forth instead
of only background and foreground.

The present invention is also able to properly handle
dynamic backgrounds such as a fountain, waves, sun glint,
illumination change, weather like rain, snow, and dust by
filtering out this spurious motion. Most other prior art
methods (including those relying on the flux tensor methods
alone) would respond to these environmental changes as
“foreground motion” and falsely identify many pixels as
being important. In reality if we are tracking a person
walking in rain or skating in snow we only want the output
of the method to indicate the pixels where the person is
located. The present invention is capable of distinguishing
between background environmental changes that induce
false motion from the true motion of foreground objects/
targets of interest.

The present invention uses a split Gaussian representation
to model the foreground and background that is based on
two separate probability models—one for the object appear-
ance and a separate probability model for the changing
background. The split Gaussian is different from the com-
monly used approach of a single Mixture of Gaussians
(MOG) or Gaussian Mixture Model (GMM) to model both
the foreground and background used by other static and
moving object detection methods. Although a single mixture
of Gaussians can be used for the foreground-background
model, the split Gaussian is more flexible and provides
better overall video change detection performance.

The present invention incorporates a method for auto-
matic learning of parameters for each pixel or region in the
image that is not hard-coded or predetermined, but adaptive
to the specific video being analyzed and the spatiotemporal
context of the object being tracked. This significantly
reduces the number of parameters that needs to be manually
specified and increases detection accuracy due to automatic
parameter adaptation. For example, the number of Gauss-
ians. K, for any given pixel in the split Gaussian background
model is not fixed a priori but is updated on every frame as
new information about the scene is observed and measured
in the video.

The present invention associates a semantic label with
each pixel that is identified as having changed in the scene
using a combination of processing algorithms including
information provided by the flux tensor model, split gauss-
ian model, appearance agreement with foreground model,
blob size, and object based analysis. The semantic label
processing enables categorizing changed pixels as being
associated with six or more categories including a true
moving object, stopped object, shadows and illumination
change, static background, a revealed background when a
stationary object moves, a dynamic background arising from
constant motion such as a water fountain, or sun glint from
the waves off a water surface.

The invention fuses two or more types of motion infor-
mation at the pixel level by combining the flux tensor
response jointly with the Gaussian mixture response to
facilitate detection of both moving objects and those moving
objects which have stopped or whose velocity has become
very low. The invention can be extended to fuse other
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sources of information such as optical flow, texture infor-
mation, shape information, or depth information.

The present invention can be applied to video taken by a
moving camera, such as a camera mounted on an airplane or
drone, after the sequence of video frames is registered and
stabilized with respect to an internal or external reference
system. A possible internal reference system is one or more
base image frames from the video to which other nearby
frames are registered, or with respect to an external refer-
ence system including a physical geospatial map of the
indoor or outdoor scene.

It is therefore an object of the present invention to provide
moving and stationary object detection with improved per-
formance and accuracy over the prior art.

It is a further object of the present invention to provide a
method for moving and stationary object detection that can
discriminate between stationary objects and stationary back-
ground.

It is still a further object of the present invention is to
provide a method for moving and stationary object detection
that reduces false detections due to shadowing, illumination
changes, background dynamics, and camera jitter.

Briefly stated, the present invention achieves these and
other objects through a method for static and moving object
detection employing a motion computation method based on
spatio-temporal tensor formulation, a foreground and back-
ground modeling method, and a multi-cue appearance com-
parison method. The invention operates in the presence of
shadows, illumination changes, dynamic background, and
both stopped and removed objects.

According to an embodiment of the invention, a method
for static and moving object detection from a source of video
images, pixel-level motion from said video images is
detected where the detection comprises performing motion
segmentation and performing background subtraction,
where background subtraction further comprises modeling
image background and modeling image foreground sepa-
rately from each other, and where background modeling
comprises an adaptive plurality of Gaussians; fusing the
results of motion segmentation, background modeling, and
foreground modeling so as to identify moving foreground
objects and static foreground objects; and discriminating
among static foreground objects so as to classify them as
either stopped objects or background.

The above and other objects, features and advantages of
the present invention will become apparent from the fol-
lowing description read in conjunction with the accompa-
nying drawings, in which like reference numerals designate
the same elements.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a system flow diagram for three primary
modules comprising the present invention’s static and mov-
ing object detection using flux tensor with split Gaussian
models.

FIG. 2 depicts the fusion process of the flux tensor and
split Gaussian models in the present invention.

FIG. 3 depicts the classification of stopped objects cor-
responding and edge maps.

FIG. 4 depicts the classification of revealed background
which is revealed by the removal of objects, and correspond-
ing edge maps.

FIG. 5 depicts selected foreground detection results from
six state-of-the-art change detection algorithms versus the
present invention’s Flux Tensor Split Gaussian (FTSG)
method.

FIG. 6 depicts a quantitative comparison of results from
six state-of-the-art change detection algorithms versus the
present invention’s Flux Tensor Split Gaussian (FTSG)
method.

FIG. 7 depicts the performance of the present invention’s
Flux Tensor Split Gaussian (FTSG) method for a eleven
scenarios for all seven performance measures.
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1 depicts the present invention’s system
flow diagram. Flux Tensor with Split Gaussian models
(FTSG) consists of three main modules described below:

a) Pixel level motion detection module 10: two comple-
mentary methods, flux tensor based motion detection 40 and
split Gaussian models 50 based background subtraction, run
separately on input images and produce foreground detec-
tion results.

b) Fusion module 20: flux tensor based 40 and split
Gaussian based detection results are fused using a rule-based
system 70, 80, 90 to produce improved results that reduce
errors due to noise, illumination changes, and halo effects.

c) Object level classification module 30: removed and
stopped objects are handled. Edges of the static objects in
foreground detection mask 100 are compared to the edges of
the corresponding object in current image and background
110 model using chamfer matching 120. Detailed descrip-
tions of each component are given in the following sections.
Flux Tensor Based Motion Detection

Motion blob detection is performed using multichannel
version of flux tensor method 40 [3] which is an extension
to 3D grayscale structure tensor. Using flux tensor 40,
motion information can be directly computed without
expensive eigenvalue decompositions. Flux tensor 40 rep-
resents the temporal variation of the optical flow field within
the local 3D spatiotemporal volume. In expanded matrix
form, flux tensor 40 is written as:

f{ﬁxat} fﬁxﬁtﬁyﬁt Y fgaxaz arztY
e [ZL2L [0, [P,
0 0ydr dxdr dyor 0 0ydr ark
1 81 1 81 1 zd
fgﬁaxaz faﬂ Tt fg{ﬁ} )

The elements of the flux tensor 40 incorporate information
about temporal gradient changes which leads to efficient
discrimination between stationary and moving image fea-
tures. Thus the trace of the flux tensor 40 matrix which can
be compactly written and computed as,

@

dy

9 2
trace(JF):LHa—tvl

can be directly used to classify moving and non-moving
regions without eigenvalue decompositions. Flux tensor 40
based moving object detection has been successfully used in
both surveillance [4, 10] and biomedical video analysis
applications [9, 8].
Split Gaussian Models

Gaussian models have been widely used in background
subtraction methods. Mixture of Gaussians can efficiently
represent multimodal signals, which makes them suitable for
background modeling and subtraction. We adopt mixture of
Gaussians as our background model. However, unlike MoG
in [12] where background and foreground are blended
together into a single model with fixed number of Gaussians,
we model foreground and background separately, and use
adaptively changing number of Gaussians for the back-
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6

ground model 50. This simplifies the background/fore-
ground classification step 30, prevents background model 50
from being corrupted by foreground pixels, and also pro-
vides better adaptation for different background types (static
vs. dynamic backgrounds). This approach has fast boot-
strapping, adaptive updating and complex background envi-
ronment modeling capabilities. Background model: We use
a mixture of K Gaussians to model the background where K
is a spatially and temporally adaptive variable. Every new
pixel value, I, (x, y), is checked against the existing K
Gaussian distributions. A match to a Gaussian is defined as
pixel values within Tb standard deviations of the mean:

®

Dipin (%, y) = mlnmax((lr(x ¥ =i )f =Tp-00)

A pixel is labeled as foreground if it does not match any of
the Gaussians in the background model:

ift Dy (%, y) >0

otherwise

1, @)
Fplx, y) = 0

T, is a fixed threshold and stands for number of standard
deviations, and

k
o= Zw;o’;.
i

For each pixel, there will be KxC Gaussian models where C
is the number of channels, e.g. 3 for RGB. For simplicity, all
the channels share the same variance o and weight w.
Foreground appearance (reference) model 60: We use a
single Gaussian to model the foreground. Foreground
appearance model 60 (shown in FIG. 1, module 1) is used to
distinguish static foreground (stopped object and revealed
background) from spurious detections due to illumination
changes and noise within ambiguous regions, F,, (X, y)
where F=0 and Fz=1 (detected as background by flux but
as foreground by background subtraction shown as ambigu-
ous foreground 80 in FIG. 1 module 2).

Referring to FIG. 2, static foreground regions Fg are
identified 100 within ambiguous detections F,,, using fore-
ground model:

L if  Faw(x, y)=1and ®
L%, y) =gy (3 y) < Ty

0, otherwise

Fs(x, ) =

Model initialization: Flux tensor provides motion informa-
tion, and the fusion and classification modules greatly
reduce false positives. Therefore, the background model can
be directly initialized using the first few frames and the
foreground appearance model can be initialized to be empty.
Background model update: Common background model
update schemes can be classified as blind update or conser-
vative update [1]. Blind update, such as in MoG [12],
incorporates all sample values into the background model,
while conservative update only incorporates sample values
that are previously classified as background. The present
invention uses the conservative update policy for both our
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background and foreground models. Fusion 70, 80, 90 and
object classification modules 100, 110, 120, 130, 140 (see
FIG. 1) considerably reduce potential deadlock problems in
conservative update where temporary detection errors may
become permanent ghosts. Static background and illumina-
tion changes are updated into the background model as:

u=(1-)My, +oMl, (6)

0P =(1-Mo, *+Ma(l ) ol 1) %)

o; ~(1-0)w; . +oM (8)

M=(1-Fp)U(F gp=Fs) ©)]

where o is a fixed learning rate set to 0.004 and M stands for
update mask. Background revealed by removed objects and
dynamic background are incorporated to background model
as new Gaussian distributions. A new Gaussian is initialized
with a high variance and low weight, and its mean is set to
the current pixel value. If there is a large persistent change,
anew model will be added to each pixel (i.e. in PTZ scenario
[7], camera field of view change triggers large persistent
change). Existing Gaussian models with weights less than a
threshold T, are discarded.

Foreground model update: As in the case of the background
model, a conservative update strategy is used for the fore-
ground model. Foreground model is only updated with the
foreground regions indicated by the inverse of the back-
ground model update mask. In order to accommodate fast
changing foreground, a high learning rate is used for fore-
ground update.

Fusion of Flux Tensor and Split Gaussian Models

The goal of this decision fusion module is to exploit
complementary information from two inherently different
approaches to boost overall detection accuracy. Referring to
FIG. 1, flux tensor based motion segmentation 40 produces
spatially coherent results due to spatio-temporal integration.
These results are also robust to illumination changes and soft
shadows due to use of gradient based information. But since
the method relies on motion, it fails to detect stopped
foreground objects and tends to produce masks larger than
the objects. Background subtraction 50 on the other hand
can detect stopped objects, but is sensitive to noise, illumi-
nation changes and shadows. Here the present invention
extends flux tensor based motion segmentation 40 with split
Gaussian foreground and background models 50 to generate
a more complete and accurate foreground object detection
60 method.

Referring to FIG. 2 shows fusion flow chart and some
examples of flux tensor and split Gaussian model fusion (40,
50, FIG. 1) results. Pixels that are detected 150 as fore-
ground by both flux tensor and split Gaussian background
subtraction (40, 50, FIG. 1) are classified as moving fore-
ground objects 180. Pixels that are detected 160, 170 as
foreground by background subtraction only and have a
match in foreground model correspond to static foreground
objects 200.

Stopped and Removed Object Classification

Still referring to FIG. 2, the present invention classifies
both stopped objects (true positives) and revealed back-
ground by removed objects (false positives) as static fore-
ground (see 100, FIG. 1). Distinguishing these two types of
static foreground can effectively reduce the false positive
rate and tackle deadlock problem. The present invention’s
method used for removed and stopped objects classification
(see 30, FIG. 1) is based on [6], which basically has three
steps: 1. Identify pixels corresponding to static regions 100;
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2. Perform edge detection on static regions in current image
110, background generated by background subtraction, and
foreground detection mask 120; and 3. Perform classifica-
tion based on edge matching 130, 140.

Referring to FIG. 3 and FIG. 4 show classification
examples for stopped object (an abandoned bag) and
revealed background by removed object (ghost effect due to
background model initialization) respectively. Stopped
object has higher edge similarity between current image and
foreground mask, while revealed background by removed
object has higher edge similarity between background model
and foreground mask.

Results and Analysis

The proposed flux tensor with split Gaussian models
system is evaluated using the dataset and evaluation metrics
in CVPR 2014 Change Detection challenge [7]. One fixed
set of parameters is used for all the sequences. The learning
rate a is 0.004 for background model and 0.5 for foreground
model. The matching threshold T, in Eq. 3 is 3 and the
similarity matching threshold T in Eq. 5 is 20. The threshold
for flux tensor to segment moving foreground object from
non-moving background is dynamically changing according
to the number of Gaussians distributions at each pixel
location. This avoids the use of a fixed global threshold
unlike most other temporal differencing methods.

Referring to FIG. 6 shows the comparison result of
present invention’s FTSG methodology with other state-of-
the-art change detection methods. Evaluation scores of those
methods are obtained from http://www.changedetection.net.
The best result of each metric is highlighted and in all the
measures listed in FIG. 6. It can be seen that the present
invention’s FTSG methodology outperforms all the listed
methods in five out of seven measures and has the second
best score in the remaining two measures, specificity and
FPR.

Referring to FIG. 7 shows results of the proposed
approach on all eleven scenarios. On seven out of eleven
scenarios and on the overall evaluation the present inven-
tion’s FTSG methodology outperforms not only the listed
state-of the-art methods but also the new change detection
challenge submissions in terms of average ranking.

Referring to FIG. 5 shows moving object detection results
for various algorithms including proposed Flux Tensor with
Split Gaussian models (FTSG) on CVPR 2014 Change
Detection dataset [7] with some typical frames selected from
the 11 categories. The proposed FTSG is robust to illumi-
nation changes (col 1), it can detect long term static objects
(col 3), and it also handles dynamic background (col 2).
Image in col 4 demonstrates that FTSG can correctly iden-
tify revealed background by removed object, and image in
col 5 shows that the present invention’s FTSG methodology
can adapt to scene changes quickly (sudden change of
camera focus).

A simulation/prototype of the present invention imple-
mented in Matlab runs at 10 fps for a 320x240 video. Matlab
implementation of flux tensor only detection runs at 50 fps.
flux tensor computation can be easily parallelized for dif-
ferent architectures as in [10] because of the fine grain
parallelism of the filter operations.

Having described preferred embodiments of the invention
with reference to the accompanying drawings, it is to be
understood that the invention is not limited to those precise
embodiments, and that various changes and modifications
may be effected therein by one skilled in the art without
departing from the scope or spirit of the invention as defined
in the appended claims.
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What is claimed is:

1. A method for static and moving object detection from
a source of video images, comprising the steps of:

detecting pixel-level motion from said video images,

wherein said detection further comprises the steps of:
performing motion segmentation;
performing background subtraction, wherein said back-
ground subtraction further comprises the steps of:
modeling image background and modeling image
foreground separately from each other, wherein
said background modeling comprises an adaptive
plurality of Gaussians;
fusing results of said motion segmentation, said back-
ground modeling, and said foreground modeling so as
to identify moving foreground objects and static fore-
ground objects; and

discriminating among said static foreground objects so as

to classify them as either stopped objects or back-
ground.

2. The method of claim 1, wherein said step of motion
segmentation further comprises the step of determining the
temporal variation of an optical field flow within a local
3-dimensional spatiotemporal volume.

3. The method of claim 2, wherein said step of determin-
ing said temporal variation further comprises:

computing a flux tensor matrix represented by

f o1 zd faz1 521d faz1 521d
axa:| @0 J axarayar®? ) axa192 %
b f521 7, f AW faz1 ri
P2 L ayaraxar®Y I\ ayae ¢ aaraa ®
f521 521d 1 &1 f o1 zd
Lazaxar”? ) ez aye:®Y  J\a2[ ¥

and computing a trace of said flux tensor matrix rep-
resented by

2
dy

a
t Jg) = — VI
race(Jr) LHa[

where 1 represents pixel intensity.
4. The method of claim 1, wherein said step of image
background modeling further comprises the steps of:

comparing pixel values against a plurality of Gaussians;
and

determining a pixel match, wherein a pixel match is
defined as pixel values falling within a predetermined
number of standard deviations from a mean value.

5. The method of claim 4, wherein said mean value is
determined by

Din(x, y) = minmax (( (x, y) — g j)* = Tp- 07)
K jeC

ie

where
1(x, y) is the value of a pixel;
T, is said predetermined number of standard deviations;

K is a variable denoting a number of Gaussian distribu-
tions
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U’=Zw;0’;,

where
w;, is channel weight; and
0, is channel variance.
6. The method of claim 5, wherein the number of Gauss-
ian models associated with each pixel is represented by:

KxC

where C is the number of channels.

7. The method of claim 6, wherein a pixel is determined
to match any said Gaussian in an image background model
when it satisfies the criteria:

L if Dyin(x, y) >0

0, otherwise

Fpx, y) ={

and

is determined to comprise foreground when is does not

satisfy said criteria.

8. The method of claim 7, wherein said step of image
foreground modeling further comprises the step of detecting
static foreground within ambiguous foreground detections
according to:

Fomp(x, y) =1 and
Li(x, y) —ps(x, y) < T

0, otherwise

Fs(x, ) =

where

F are static foreground regions;

F,,.» are ambiguous detection regions; and

T, is a predetermined number of standard deviations.

9. The method of claim 1, wherein said step of image
background modeling further comprises the step of initial-
izing said background model with a plurality of initial
frames of said video images.

10. The method of claim 1, wherein said step of image
foreground modeling further comprises the step of initial-
izing said foreground model as empty.

11. The method of claim 1, wherein said step of image
background modeling further comprises the step of back-
ground model updating, wherein said step of updating
further comprises the steps of:

updating said background model with static background

and illumination changes;

incorporating background revealed by removed objects

and dynamic background into said background model
as new Gaussian distributions;

initializing said new Gaussians with high variance, low

weight, and mean set to a current pixel value; and
discarding Gaussians with weights less than a predeter-
mined threshold.

12. The method of claim 1, wherein said step of image
foreground modeling further comprises the step of fore-
ground model updating, wherein said step of updating
further comprises the steps of:

updating said foreground model in those foreground

regions indicated by an inverse of said background
model update masks.
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13. The method of claim 1, wherein said step of fusing
further comprises the steps of:
classifying as moving foreground objects those pixels
which are detected as foreground by both said step of
motion segmentation and said step of background sub-
traction; and
classifying as static foreground objects those pixels which
are detected as foreground by said step of background
and which have a match in said foreground model.
14. The method of claim 1, wherein said step of discrimi-
nating among said static foreground objects further com-
prises the steps of:
identifying those pixels corresponding to said static fore-
ground objects;
performing edge detection on said static foreground
objects in current image;
performing edge detection on background generated by
background subtraction and foreground detection
mask; and
performing classification based on edge matching.
15. The method of claim 14, wherein said step of classi-
fication further comprises identifying:
when a static object has a high edge similarity between
said current image and said foreground detection mask;
and
when background revealed by object removal has a high
edge similarity to said background model and said
foreground detection mask.
16. A method for static and moving object detection from
a source of video images comprised of pixels, said method
comprising:
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associating a semantic label with each pixel that has been
identified as having changed in said video image,
wherein said step of associating further comprises the
steps of:
performing motion segmentation;
performing background subtraction, wherein said back-
ground subtraction further comprises the steps of:
modeling image background and modeling image
foreground separately from each other, wherein
said background modeling comprises an adaptive
plurality of Gaussians;
performing appearance agreement with an image fore-
ground model, blob size, and object based analysis;
fusing results of said motion segmentation, said back-
ground modeling, and said appearance agreement so
as to associate each said changed pixel with an image
category.

17. The method of claim 16, wherein said image category
comprises any one of the following image categories:

true moving object;

stopped object;

shadowing;

illumination change;

static background;

background revealed upon a moved stationary object; and

dynamic background due to constant motion.

18. The method of claim 16, wherein said step of fusing
further comprises fusing image information selected from
the group consisting of optical flow, texture information,
shape information, and depth information.

#* #* #* #* #*



